Definitions Let c be a number in the domain D of a function f. Then $f(c)$ is the
(a) absolute maximum value of f on D, i.e. $f(c)=\max _{x \in D} f(x)$, if $f(c) \geq f(x)$ for all x in D.
(b) absolute minimum value of f on D, i.e. $f(c)=\min _{x \in D} f(x)$, if $f(c) \leq f(x)$ for all x in D.
(c) absolute extremum value of f, if $f(c)$ is either an absolute maximum of minimum value of f on D.
(d) local maximum value of f if $f(c) \geq f(x)$ when $x \in D$ is near c, i.e. there exists $\delta>0$ such that $f(c) \geq f(x)$ for all $x \in D \cap(c-\delta, c+\delta)$.
(e) local minimum value of f if $f(c) \leq f(x)$ when $x \in D$ is near c, i.e. there exists $\delta>0$ such that $f(c) \leq f(x)$ for all $x \in D \cap(c-\delta, c+\delta)$.
(f) local extremum value of f if $f(c)$ is either a local maximum or minimum value of f.
(g) A graph is said to be concave up at a point if the tangent line to the graph at that point lies below the graph in the vicinity of the point and concave down at a point if the tangent line lies above the graph in the vicinity of the point.
(h) A point where the concavity changes (from up to down or down to up) is called a point of inflection.

Definitions Let c be a number in the domain D of a function f. Then c is called a critical number of f if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Extreme Value Theorem Let f be continuous on $[a, b]$. Then there exist $x_{1}, x_{2} \in[a, b]$ such that

$$
\min _{[a, b]} f=f\left(x_{1}\right) \leq f(x) \leq f\left(x_{2}\right)=\max _{[a, b]} f \quad \forall x \in[a, b] .
$$

Fermat's Theorem Let f be continuous on $[a, b]$. If f has a local extremum at $c \in(a, b)$, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$,
i.e. If f has a local extremum at an interior point $c \in(a, b)$, then either f is not differentiable at c, or f is differentiable at c, and $f^{\prime}(c)=0$.

Proof Suppose that

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=f^{\prime}(c)>0
$$

since $\epsilon=\frac{f^{\prime}(c)}{2}>0$, there exists $\delta>0$ such that if $0<|h|<\delta$ then

$$
\left.\left.\begin{array}{rl}
\left|\frac{f(c+h)-f(c)}{h}-f^{\prime}(c)\right|<\frac{f^{\prime}(c)}{2} & \Leftrightarrow \frac{f^{\prime}(c)}{2}>\frac{f(c+h)-f(c)}{h}-f^{\prime}(c)>-\frac{f^{\prime}(c)}{2} \\
& \Longrightarrow \frac{f(c+h)-f(c)}{h}>\frac{f^{\prime}(c)}{2}>0
\end{array}\right] \begin{array}{l}
f(c+h)-f(c)>0 \text { for all } \delta>h>0 \\
f(c+h)-f(c)<0 \text { for all } 0>h>-\delta
\end{array}\right\}
$$

Thus $f(c)$ is not a local extremum of f.

Similarly, if $f^{\prime}(c)<0$ then f decreases through c and $f(c)$ is not a local extremum of f. Hence, if f has a local extremum at an interior point $c \in(a, b)$ then $f^{\prime}(c)=0$.

Remark The local extremum of a continuous function f occurs only at a critical number of f.

Remark To find an absolute extremum of a continuous function f on a closed interval $I=[a, b]$, we note that either it is local or it occurs at an endpoint of the interval I.

Rolle's Theorem Let f be continuous on $I=[a, b]$ and let f be differentiable on (a, b). Suppose that $f(a)=f(b)$. Then there is a number $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Proof

Case 1 Suppose that $f(x)=f(a)=f(b)$ for all $x \in[a, b] \Longrightarrow f^{\prime}(x)=0$ for all $x \in(a, b)$.

Case 2 Suppose there exits $x \in(a, b)$ such that $f(x) \neq f(a)=f(b) \Longrightarrow$ there exists $c \in(a, b)$ such that $f(c)$ is an extremum value of f. Therefore, $f^{\prime}(c)=0$ by the Fermat's Theorem.

The Mean Value Theorem Let f be continuous on $I=[a, b]$ and let f be differentiable on (a, b). Then there is a number $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \Longleftrightarrow f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Proof

Consider the function g defined by

$$
g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a) \quad \text { if } x \in[a, b] .
$$

Since g is continuous on $I=[a, b]$, differentiable on (a, b) and satisfies that $g(a)=g(b)=0$, there exists $c \in(a, b)$, by the Rolle's Theorem, such that

$$
0=g^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a} \Longrightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Remarks Let f be differentiable on (a, b). Suppose that $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then
(a) f is $1-1$ on (a, b).

Proof For any $x_{1} \neq x_{2} \in(a, b)$, there exits c lying between x_{1} and x_{2}, by the Mean Value Theorem, such that

$$
f\left(x_{1}\right)-f\left(x_{2}\right)=f^{\prime}(c)\left(x_{1}-x_{2}\right) \neq 0 \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right) \Longrightarrow f \text { is } 1-1 \text { on }(a, b) .
$$

(b) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then f is increasing on (a, b), i.e. $f\left(x_{1}\right)<f\left(x_{2}\right)$ for any $x_{1}<x_{2} \in(a, b)$.

Proof For any $x_{1}<x_{2} \in(a, b)$, there exits $c \in\left(x_{1}, x_{2}\right)$, by the Mean Value Theorem, such that

$$
f\left(x_{1}\right)-f\left(x_{2}\right)=f^{\prime}(c)\left(x_{1}-x_{2}\right)<0 \Longrightarrow f\left(x_{1}\right)<f\left(x_{2}\right) \Longrightarrow f \text { is increasing on }(a, b) .
$$

(c) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then f is decreasing on (a, b), i.e. $f\left(x_{1}\right)>f\left(x_{2}\right)$ for any $x_{1}<x_{2} \in(a, b)$.

Proof For any $x_{1}<x_{2} \in(a, b)$, there exits $c \in\left(x_{1}, x_{2}\right)$, by the Mean Value Theorem, such that

$$
f\left(x_{1}\right)-f\left(x_{2}\right)=f^{\prime}(c)\left(x_{1}-x_{2}\right)>0 \Longrightarrow f\left(x_{1}\right)>f\left(x_{2}\right) \Longrightarrow f \text { is decreasing on }(a, b) .
$$

(d) Let f be twice differentiable on $I=(a, b)$. If $f^{\prime \prime}(x)>0$ for all $x \in I=(a, b)$, then f is concave upward on I, i.e. For each $c \in I$, the graph of $y=f(x)$, for x near c, lies above the tangent line to $y=f(x)$ at $(c, f(c))$.

Proof For each $c \in I$, since

$$
f^{\prime \prime}(c)=\lim _{x \rightarrow c} \frac{f^{\prime}(x)-f^{\prime}(c)}{x-c}>0,
$$

there exists $\delta>0$ such that if $0<|x-c|<\delta$ then

$$
\begin{aligned}
& \frac{f^{\prime}(x)-f^{\prime}(c)}{x-c}>0 \\
\Longrightarrow & \begin{cases}f^{\prime}(x)-f^{\prime}(c)>0 & \forall x \in(c, c+\delta) \\
f^{\prime}(x)-f^{\prime}(c)<0 & \forall x \in(c-\delta, c) .\end{cases}
\end{aligned}
$$

This imples that if $0<|x-c|<\delta$, by the Mean Value Theorem, then

$$
\begin{aligned}
& f(x)-f(c)-f^{\prime}(c)(x-c) \\
= & {\left[f^{\prime}(z)-f^{\prime}(c)\right](x-c) \text { for some } z \text { lying between } x \text { and } c } \\
> & 0
\end{aligned}
$$

This proves that the point $(x, f(x))$ in the graph of $y=f(x)$ lies above the point $(x, f(c)+$ $f^{\prime}(c)(x-c)$) in the tangent line to the graph of $y=f(x)$ at $(c, f(c))$.
(e) Let f be twice differentiable on $I=(a, b)$. If $f^{\prime \prime}(x)<0$ for all $x \in I=(a, b)$, then f is concave downward on I, i.e. For each $c \in I$, the graph of $y=f(x)$, for x near c, lies below the tangent line to $y=f(x)$ at $(c, f(c))$.

Cauchy Mean Value Theorem Let f, g be continuous on $I=[a, b]$ and let f, g be differentiable on (a, b). Then there is a number $c \in(a, b)$ such that

$$
f^{\prime}(c)[g(b)-g(a)]=g^{\prime}(c)[f(b)-f(a)] .
$$

Proof

Case 1 If $g(b)=g(a)$ then there exists $c \in(a, b)$, by the Rolle's Theorem, such that $g^{\prime}(c)=0$. Hence, the equality holds.

Case 2 If $g(b) \neq g(a)$ the function h defined on I by

$$
h(x)=f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}[g(x)-g(a)] \quad \text { if } x \in[a, b] .
$$

Since h is continuous on $I=[a, b]$, differentiable on (a, b) and satisfies that $h(a)=h(b)=0$, there exists $c \in(a, b)$, by the Rolle's Theorem, such that

$$
0=h^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{g(b)-g(a)} g^{\prime}(c) \Longrightarrow f^{\prime}(c)[g(b)-g(a)]=g^{\prime}[f(b)-f(a)]
$$

An Indeterminate Form $\frac{0}{0}$ and l'Hôpital's Rule Let f, g be continuous on $I=[a, b]$ and let f, g be differentiable on (a, b). Suppose that
(a) $f(c)=0=g(c)$ for some $c \in(a, b)$, i.e. $\lim _{x \rightarrow c} f(x)=0=\lim _{x \rightarrow c} g(x)$,
(b) $g^{\prime}(x) \neq 0$ for all $x \in(a, c) \cup(c, b)$,
(c) $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \in \mathbb{R}$ exists.

Then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L .
$$

Outline of the Proof

$$
\begin{aligned}
\lim _{x \rightarrow c} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{g(x)-g(c)} \text { since } f(c)=g(c)=0 \\
& =\lim _{x \rightarrow c} \frac{f^{\prime}(t)}{g^{\prime}(t)} \text { for some } t \text { lying between } x \text { and } c \text { by the Cauchy Mean Value Theorem } \\
& =\lim _{t \rightarrow c} \frac{f^{\prime}(t)}{g^{\prime}(t)} \text { by observng that } t \rightarrow c \text { whenever } x \rightarrow c \\
& =L
\end{aligned}
$$

An Indeterminate Form $\pm \frac{\infty}{\infty}$ and l'Hôpital's Rule Let c be a point in the interval (a, b) and let f, g be be differentiable on $(a, c) \cup(c, b)$. Suppose that
(a) $\lim _{x \rightarrow c} f(x)= \pm \infty$ and $\lim _{x \rightarrow c} g(x)= \pm \infty$,
(b) $g^{\prime}(x) \neq 0$ for all $x \in(a, c) \cup(c, b)$,
(c) $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \in \mathbb{R}$ exists.

Then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
$$

Outline of the Proof

Case 1 Suppose that $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L=0$.
Given $\epsilon>0$, since $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L=0$, there exists $\delta_{1}>0$ such that

$$
\text { if } 0<|x-c|<\delta_{1} \text { then }\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}\right|<\epsilon
$$

For any points x and x_{1} satisfying

$$
\text { either } c<x<x_{1}<c+\delta_{1} \text {, or } c-\delta_{1}<x_{1}<x<c
$$

there exists $x_{2} \in\left(c-\delta_{1}, c\right) \cup\left(c, c+\delta_{1}\right)$ lying between x and x_{1}, by the Cauchy Mean Value Theorem, such that

$$
\left|\frac{f(x)-f\left(x_{1}\right)}{g(x)-g\left(x_{1}\right)}\right|=\left|\frac{f^{\prime}\left(x_{2}\right)}{g^{\prime}\left(x_{2}\right)}\right|<\epsilon .
$$

Also, since

$$
\lim _{x \rightarrow c} \frac{1-\frac{f\left(x_{1}\right)}{f(x)}}{1-\frac{g\left(x_{1}\right)}{g(x)}}=1
$$

there exists $\delta_{2}>0$ such that

$$
\text { if } 0<|x-c|<\delta_{2} \text { then } \frac{1-\frac{f\left(x_{1}\right)}{f(x)}}{1-\frac{g\left(x_{1}\right)}{g(x)}}>\frac{1}{2}
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ such that if $0<|x-c|<\delta$ then

$$
\begin{aligned}
\frac{1}{2}\left|\frac{f(x)}{g(x)}\right| & <\left|\frac{f(x)}{g(x)}\left\{\frac{1-\frac{f\left(x_{1}\right)}{f(x)}}{1-\frac{g\left(x_{1}\right)}{g(x)}}\right\}\right| \\
& =\left|\frac{f(x)-f\left(x_{1}\right)}{g(x)-g\left(x_{1}\right)}\right| \\
& =\left|\frac{f^{\prime}\left(x_{2}\right)}{g^{\prime}\left(x_{2}\right)}\right| \\
& <\epsilon
\end{aligned}
$$

which implies that

$$
\left|\frac{f(x)}{g(x)}\right|<2 \epsilon .
$$

Hence,

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=0=L=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Case 2 Suppose that $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \neq 0$.
Consider the function h defined by $h(x)=f(x)-L g(x)$ for all $x \in(a, c) \cup(c, b)$ and note that

$$
\lim _{x \rightarrow c} \frac{h^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}-L=0 .
$$

Applying Case 1, we get

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}-L=\lim _{x \rightarrow c} \frac{h(x)}{g(x)}=0 \Longrightarrow \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=L
$$

